Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle.

نویسندگان

  • Cheryl A Collier
  • Clinton R Bruce
  • Angela C Smith
  • Gary Lopaschuk
  • David J Dyck
چکیده

The present study examined the acute effects of metformin on fatty acid (FA) metabolism in oxidative soleus (SOL) and glycolytic epitrochlearis (EPT) rodent muscle. SOL and EPT were incubated for either 30 or 180 min in the absence or presence of 2 mM metformin and with or without insulin (10 mU/ml). Metformin did not alter basal FA metabolism but countered the effects of insulin on FA oxidation and incorporation into triacylglyerol (TAG). Specifically, metformin prevented the insulin-induced suppression of FA oxidation in SOL but did not alter FA incorporation into lipid pools. In contrast, in EPT metformin blunted the incorporation of FA into TAG when insulin was present but did not alter FA oxidation. In SOL, metformin resulted in a 50% increase in AMP-activated protein kinase alpha2 activity and prevented the insulin-induced increase in malonyl-CoA content. In both fiber types, basal and insulin-stimulated glucose oxidation were not significantly altered by metformin. All effects were similar regardless of whether they were measured after 30 or 180 min. Because increased muscle lipid storage and impaired FA oxidation have been associated with insulin resistance in this tissue, the ability of metformin to reverse these abnormalities in muscle FA metabolism may be a part of the mechanism by which metformin improves glucose clearance and insulin sensitivity. The present data also suggest that increased glucose clearance is not due to its enhanced subsequent oxidation. Additional studies are warranted to determine whether chronic metformin treatment has similar effects on muscle FA metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basic disturbances in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes mellitus.

The present article addresses the hypothesis that disturbances in skeletal muscle fatty acid handling in abdominal obesity and type 2 diabetes mellitus may play a role in the aetiology of increased adipose tissue stores, increased triacylglycerol storage in skeletal muscle and skeletal muscle insulin resistance. The uptake and/or oxidation of fatty acids have been shown to be impaired during po...

متن کامل

Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia.

Derangements in skeletal muscle fatty acid (FA) metabolism associated with insulin resistance in obesity appear to involve decreased FA oxidation and increased accumulation of lipids such as ceramides and diacylglycerol (DAG). We investigated potential lipid-related mechanisms of metformin (Met) and/or exercise for blunting the progression of hyperglycemia/hyperinsulinemia and skeletal muscle i...

متن کامل

Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects.

Increased accumulation of fatty acids and their derivatives can impair insulin-stimulated glucose disposal by skeletal muscle. To characterize the nature of the defects in lipid metabolism and to evaluate the effects of thiazolidinedione treatment, we analyzed the levels of triacylglycerol, long-chain fatty acyl-coA, malonyl-CoA, fatty acid oxidation, AMP-activated protein kinase (AMPK), acetyl...

متن کامل

Toll-like receptor 4 modulates skeletal muscle substrate metabolism.

Toll-like receptor 4 (TLR4), a protein integral to innate immunity, is elevated in skeletal muscle of obese and type 2 diabetic humans and has been implicated in the development of lipid-induced insulin resistance. The purpose of this study was to examine the role of TLR4 as a modulator of basal (non-insulin-stimulated) substrate metabolism in skeletal muscle with the hypothesis that its activa...

متن کامل

Restoring AS160 phosphorylation rescues skeletal muscle insulin resistance and fatty acid oxidation while not reducing intramuscular lipids.

We examined whether AICAR or leptin rapidly rescued skeletal muscle insulin resistance via increased palmitate oxidation, reductions in intramuscular lipids, and/or restoration of insulin-stimulated AS60 phosphorylation. Incubation with palmitate (2 mM, 0-18 h) induced insulin resistance in soleus muscle. From 12-18 h, palmitate was removed or AICAR or leptin was provided while 2 mM palmitate w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 291 1  شماره 

صفحات  -

تاریخ انتشار 2006